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I. INTRODUCTION

Predictive source encoding with distortion is considered, for an analog source, in the presence of an

outlier model. In particular, a stationary Gaussian source is assumed, and observation data that are a

mixture of source data and outlier data. The objective then is to design a sequence of predictive source

encoders which attain satisfactory mean difference-squared distortion in both the presence and the

absence of outlier data, subject to an output entropy constraint. As compared to the optimal at the

Gaussian source sequence of predictive encoders, the tradeoff is increased mean difference-squared

distortion and differential output entropy at the nominal Gaussian source, at the gain of good mean

distortion performance in the presence of outliers, (for parametric source encoding studies, see I.

%

.- 
Z

5%

,5'%

1 
-1

.. % a~b ,%% *.% . a,% -.



II. PRELIMINARIES

Let [}to.X,R] be a discrete-time, stationary and zero mean real source, where R denotes the real line,

where X is the name of the source, and where go is its measure. Let X1, i=1,2..., denote random variables

generated by the source, let xi, i=1,2.... denote realizations of those variables, and let Xi A[X j ,. XjT

and x, A [x jT..., ]T forj > i. Let R" denote n one-sided multiples of the real line. Let the measure .0 be

known, and let us then call [p},,X,R] the nominal source.

We now consider the outlier model. Then, if I.t,Y,R] denotes the observation process, if Y, denotes

the i-th random variable generated by this process with yi denoting its realization, and if Y{ and yi denote

vectors as in the above paragraph, we have:

Yi = (l-Vi)Xi + WiZi i=1,2,.... (1) ".-,

where Xi is the i-th random variable generated by the nominal source, where {Z, } is a sequence of-

random variables whose measure is unknown, and where the variables (V, } are i.i.d. and binary, with:

P(V i = 0 ) = l- F , P(V i =l)=c (2)
.-:.

for some £ such that 0<5<l. The sequence (Vi) determines the contamination law, and the sequence (Z,

corresponds to the contaminating process, which is not necessarily stationary. If r = 0, then the

observation process is identical to the nominal source [p,,XRI.

We will assume that the nominal source and the sequence Z,) are both absolutely continuous. We

then denote by f. (y''), the m-dimensional density function induced by the nominal source at the vector

point y''. We denote by f',(ym) the m-dimensional density function of the random vector Ym at the

vector point y', where Yi is as in (I) and Vi is as in (2). Let us define the following class of m-

dimensional density funcitons:

F? = ( f n I . _= I-)mfn + I I i-,),n hm , 3 '"'.- m

Fm ifn1 :]f (.E~f 1 ±l~l~~nlr (3)

• i, 1 .• o • .-., • . ". ". d.' ' ' .-' ." ," ' €" ." .' " ' ,',. " 4 "" .'" o" -," "'- '''4.-
k ' " ,).' .% .5.*' L:,'.';., .. , " "'"-" "- --"" z "• • .. .... ".L".'-, ,' ".'. ', '.-. ,-,'-,'J,', " ,,, •"J. ,t. ,,,% -." .",.,4



where h' is any m-dimensional density function}

It can be easily seen then that fljF . That is, Fm is an enlargement of the class of m-dimensional

densities that are generated by the outlier model in (1) and (2). An alternative form of the class Fm is as

follows:

F'= (f' :fn(y,') - (1-5)r, (y') >_ 0 ; "fym Rm

I.n(y-)dym1 -1) (4)

where

A 1_(_Om 0-5 _< 1 (5)

Let Cc denote the class of observation processes generated by the outlier model in (1) and (2), and

let us signify a process [pg,Y,R] by its measure i. Then, prCE, means that the process [p,Y,R is

contained in class Cc, and clearly xoeC,, where g. is the nominal source [Iio,X,RI.

We consider predictive source coding with distortion for the nominal source g,, when the

observation process g± belongs to the class CE. In particular, for every given infinite observation sequence

y-, we wish to design a sequence tv,,, }, t of generally stochastic operations, such that vm.y, maps the %

.e

datum xm+, of the nominal soiirce g,. Let us denote by {vm )ma, the sequence of the above operations

when the infinite observation sequence y-1 varies in R-. Let us denote by i(v,) the process induced by

[Vm) m>I when the observation sequences are generated by the process I, where ItECE. Then, we are

looking for sequences {Vm }m>,. which satisfy the following properties:

(a) For every g. in Cc, the entropy |titvj) of the process ) is bounded from above by a given finite

number.

(b) There exists some constant D < E, {X2 ), such that for every t in Cr, the difference-squared mean

distortion induced by the sequence (vm }mI is bounded from above by D. That is, if for given I.
3
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pECc, Zk+i denotes the (k+l)-th random element from the process tfvj.), then,

E , ) {(Xk+1 _ Zk+)2) ! D ; k, VIWt CC (6) ,

where Xk+i is generated by the nominal source go.

(c) The sequence Vm )m}t induces entropy and difference-squared mean distortion continuities at the .1

nominal source p. That is, given 1l > 0, where existsy> 0, such that if . is a process y-close to 4 o0

in an appropriate measure, then

IH (p ofV ,J)- ( . })I < T I (7 ) r

I Ep..( ) (Xk+i _ 7k+ )2 -Ev(. 1 (Xk+i -W k+ ) 2 ) I < j ; ,ft (8)

where in (8), Xk+1 is generated by p , Zk+ is generated by g v. I, and W k+i is generated by g{.Iv. ,,

Property (c) corresponds to qualitative robustness, see ([2 ,3],[41,[51), where the appropriate

measure of closeness between the processes g. and g is the Prohorov distance with an empirical Prohorov

metric, (see [41,[5]). If property (c) is satisfied, then the sequence {Vm }m21 is called qualitativel robust

at t From the results in [4] and [6], we conclude that (Vm })m t is qualitatively robust at .t, within the

class of stationary processes t, if it satisfies the following sufficient continuity conditions, where Fly,

denotes Prohorov distance with metric y (x,y) - I x-y I, and where y(xj, yi ) A -i , I x1-Y1  I •

(A) Pointwise continuity. That is, given finite m, given Ti>o, given x', there exists 8 > o, such that
y : m(x",y') < 8 implies flry(Vmxy,Vm.y') <Ti.

(B) Asymptotic continuity at .. That is, given > 0, T1 > 0, there exist integers n, and !, some 8 > 0,

and for each n > n, some A I:R" with g. (An) > 1-i, such that for each xn-A and yn such that

inf { oa # i:y(xi ~ t, y [j ' ) > a l nt ) < 8, it is im plied that rl, (v.,,,.,v .,-) <

We point out that if for each given xn and each n, the operation v.,, is deterministic, then the

Prohorov distance [ly, (Vn~x ,,Vn,y ,) reduces to I Vn~.x - Vn I.

4



From now on, we will assume that the nominal source is Gaussian, zero mean, and stationary, with

given spectral density. In section III, we will outline the parametric version of our approach, when the

observation process is known and predictive source encoding is sought. In section IV, we will design

predictive encoding operations for finite dimensionalities of the observation sequences. In the same

section, we will also study the performance of those operations, both at the nominal source and in the

presence of contaminating processes. In section V, we will consider extensions of the operations found in

section IV, for asymptotically long observation sequences. In the same section, we will also study

performance issues of those extensions. In section VI, we draw some conclusions.

.'
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III. THE PARAMETRIC APPROACH

In this section, we consider the case where the nominal and the observation processes are both

known and mutually dependent, and predictive encoding is sought, for entropy reduction. We will denote

the nominal and the observation processes, p and [L, respectively, and we will assume that they are

absolutely continuous. We will then denote by fI4(YT) the m-dimensional density function of the

observation process, at the vector point y''. We will denote byf 4o,(x I y') the conditional density at the

point x of the datum Xm+ from the nominal process p.0, given the observation vector y1l from the 4

observation process g.. We will also adopt the difference-squared distortion criterion.

Given the above, let us initially assume that no entropy reduction is sought. Then, as well known,

the sequence oVmlm 1 Of mappings that minimize mean distortion are deterministic and given by

conditional expectations. That is, given m and ym, we have

vm-Y'= E 4{Xm' f yT = I Y- xf ,,(x I ym )dx_ ml (ym) ().

R

and for Zkl denoting the (k+l)-th element from the process givl), the induced by the operations in (9)

mean distortion is:
d.

e, Eox E (m M2 ,ym dym
A = Et {(Xk+I -Z41t)2} = EI X } - 1 (10)

Let us now assume that in upper bound, log M, on the entropy of the process g(vl is given. Then,

we design a sequence (vm }mi of stochastic mappings, as follows:

Sten I

We select a set (Ai, li_<M } of intervals on the real line with AiAj --0 'itj, A -- R. and

ff,(x)dx = M - , wheref ,(x) is the one-dimensional density of the process p,,, at the point x.
A,

6
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Step) 2

Using the set (Ai, i: i:M) of Step 1, we design the sequence {v,,m of stochastic mappings so

that, given rn and y', the mapping vny10 is a stochastic channel, mapping the sequence yljf onto a set O

(vi,1 : li M) of scalar real values-, it maps y1' onto vi, with probability:

The set {vi 1 li! M) is selected to minimize the mean difference-squared distortion. That is,

A M
Dm 'A~,(vi )) j dy'jTfj(y7m) I p,p.(ym) f (x-vi)2f~~(ly 1~d

R'i=1 R

= inf DM-P-9(tai1) (12)(a,, ti<_M

Then, it is easily found that,

vix f [j dyffgyymppjjp.y? (13

DM,P.±((vj))=EP,,{XM+I) -z~[d~~Ti~IT~

12

where em(pg,,gt) is as in (10) and where m,,,(y') is the conditional expectation in (9). Due to

(14), we conclude that the stochastic mappings in Step 2 induce higher mean difference-squared

distortion than that induced by the conditional expectations in (9), for the gain of'reduced output entlropy.

As the number M increases to asymptotically large values, the mecan distortion In v,} approachecs

Cm~~tand the output entropy increases to the entropy of the nomninal process.



.'

Let the nominal process pgo be zero mean and stationary Gaussian with variance per datum ro, and

let the observation process g be go. Let then p2 denote the mean-squared error induced by the optimal at

j1.t mean-squared one-step predictor, when the size of the observation vector is m. Let the interval Ai in

(11) be (ai,bi), where bi>a i . Then, we easily find that the expressions in (13) and (14) take the following

form, where O(x) and 4(x) denote respectively the density function and the distribution of the zero mean

and unit variance Gaussian random variable, at the point x:

L L ro 1 j i L K oKji 2 (16

.1 2

.=

I
i o - r- _. (D"

0 .'r . .. . .
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IV. FINITE DIMENSIONALITY OBSERVATION SEQUENCES

In this section, we consider the outlier model, as exhibited by the observation process in (1) and (2),

and we assume that the nominal process is stationary zero mean Guassian. We then wish to design

predictive encoding operations Vm, for l<_m!1, where I is some given finite integer. We want the designed

operations to satisfy properties (a), (b), and (c) in section II. For given finite 1, we adopt a saddle-point

game theoretic approach, based on the parametric scheme in section Ili. We first assume that the

processes in the class C, in (1) and (2) are all absolutely continuous, and we denote by fm, (y') the m-

dimensional density function of the nominal Gaussian process go, at the vector point y7m. Then, given 1,

we consider an enlargement, F1, of the class of 1-dimensional densities generated by the model in (1) and

(2), as that in (4). In particular, we consider I-dimensional densities,/, of the observation process, such

that/EF', where:

F* F A(//y'j) -(l 54A(y'm) 0 ;YF,

J dy = 1) (17)

Sl_(lE)I . 0<5<I (18)

Let an upper bound, log N1, on the output entropy be given. Then, we wish to design predictive

encoding operations which satisfy this bound for every process in class F8, and which induce mean

difference-squared distortion that is upper bounded by a given bound, for every IcF'. Our approach

evolves from the parametric scheme in section III, and goes as follows:

Sten) I

Select a set {Aj, 1 i<N} of intervals on the real line with A, -Aj =0 ;vlj, U 1, R. and

Jf,,(x)dx M- ', where fu is the onc-dimcnsional density of the Gaussian nominal process t,, at the
A,

point x.

7.

% 4



Ster 2

Using the set (A,, i!<i M) in Step 1. and given a process i whose density function belongs to the

class F1, we form the set {pi. ,, li<_i<_M I of probabilities as follows,

Given y' in Rm  f (YT)= Jf (xlyT)dx, l<i.M (19)
A,

Let NM denote the set of sets (ai ; 1_i M) of M real numbers. We then consider the following class, D,

of mappings v, = vt(i, (ail), that is generated by varying g± in F1 and (ail in Nm:

Given g± in F1 and fail in NM, given observation sequence y', vt,y, maps the sequence y'r onto the

value ai, with probability Pip4(y'), as in (19). Given fail in NM, given gt and j±2 in F, let

Dt(-ti,lt2 , {ai}) denote the mean difference-squared distortion induced by the operation v(g 2 , fai l) in D,

at the observation process gl. Then,

D(g.1,2, I ai)) = J dylinf., (y1l) E pi,,(y )J(x-ai) 2 f4,, (xl y ')dx (20)
R' i=l R

We are then searching for a triple (91t *, 2 *, (vi )), such that gt *eF', i92 *eF8 , (vi) )EN, and:

V 1, 92r:F-F' ; DO(I, 92 *,{(Vi})<:5DI(I *, 92 *,{(Vi})D D(41*, 92*,ai}) ai} NM (21),,

Then, we select the v,* = vI(ix2*, (vi 1) encoding scheme for the class F.

Remark If an encoding scheme v1*= vI(p.2 *, (vi) in D exists, such that it satisfies (21), then it is

guaranteed that the maximum mean difference-squared distortion that it induces in Ft is

sup D(I,42*, (vi)), subject to the existence of the latter supremum. By construction, the mapping vt*

also attains maximum entropy in F1 that is bounded from above by log M.

Letfo(xly m) denote the conditional density of tle Gaussian nominal process for the datum X, I at

the point x, given the past sequence y' from the same process. Let f0 (y) denote the rn-dimensional

density of the Gaussian nominal process at the vector point ym, and let Qm be the rn-dimensional

autocovariance matrix of the process. Let us also then define:

10



m0 (y1 ) A f f0 (x I y m)dx
R

I Jfo(XIym')dx (22)
A,

We then express a theorem whose proof is in the Appendix.

Theorem I

Given the class Fs in (17), and for every 8:0<8< 1, the game in (21) has a solution

(ILI*, 92*, {vi ). If fj*(yL), j=l,2 denotes the 1-dimensional density function of the pocess ltj, j=1,2 at

the vector point yj, then this solution is as follows:

f*(Yi) =fl *(Y) =f2*(y) = (1-S)f.(y').max(l {(yI)TQ yI }I2)

where, X, J"(y')dy' = I 23

and for,

qi(y ) = M'1-min(1,X ((y1) T QT-yi }-112)] +
+poi(yi)min(l,X {(y )TQ-y y)-/2) (24)

vi = M(1-8) f dy' fo(y' )mo(yl )qi(y ) (25)

Then,

V9x.F8 ; DI(9,t 2*, {vi))_ D(I. 2*,, 2 , {Iv ) A D/.max

M Fl2
=E.o (X 2 1 -(1_) 2 M I dyfo(Y)mo(y')qj(y1 (26)

i=I LR( 
6

The encoding scheme v1 * is as follows:

Given an observation sequence yf, Vy* maps it onto vi with probability qi(y ).



Given I and M. an encoding scheme v, consists of a set {a1, 1 ~)of values, and for evcry

observation sequence yla set (p1(yll). I~iS M) of probabilitics, such that y~i is mapped onto a1 with

probability pi 1 ). Given 1, given some encoding scheme vj, given an absolutely continuous obscrvation

process with arbitrary dimensionality densities, f, let Dj(fv 1) denote the mean difference-squared

distortion induced when v, is deployed~f is the density of the observation process, and a datum from the

nominal Gaussian source is predictively encoded. Let vo denote the optimal at the Gaussian observation

process encoding scheme. That is, given an observation sequence yli, vo, maps yj onto ui, with

probability p,01(yl), where, given set (Ai, i~i M}, p0 1 (yl) is as in (22), and where for mo(yl ) as in (22):

Ui= fJfo(x)d 1  fJdy' f(yl)m.(y')p0 1 (y') (27)

Let the common set (Ai, 1! i M) be used by both the scheme v' and the scheme v1j' in T'heoremn 1,

and let this set be such that ff0(x)dx = M-1; Vi. Letf. denote the arbitrary dimensionality density of the
0 A

nominal Gaussian source, and let m0(yj) and p01(yl) be as in (22) and qi(y'1) be as in (24). Then, by

substitution, we easily obtain:

[ 2
D, (f.,v') =E X 2 ) _- M f yuok.y)m.y'pojy1 (8

D, (f., v, )E~ {' X2 1 _-(1_8)M Z [dy'fO(y')m(y')qj(yi]

-2--(1-S)M f dy'if.(yl~,y (29)

Let 11 denote the I-dimensional vector whose elements are A equal to one. Let z denote some scalar

real number, and let us then consider a density f, such that, fly') (l- )(yl) + (6(z ll), where given

and such that OS <l, wheref, is the density of the Gaussian nominal source, and where 5() denotes dcltaI

function. Given 1, given an encoding scheme v1, let DItf,,,z,v1 ) denote the mean diffcrence-squarcd

distortion induced by v1, when the observation density is such that fly') =(1- lf0 yj) + &8.I') and a

12



datum from the Gaussian nominal source is predictively encoded. Then, for DI(fo, v?') as in (28) and for

D1(f0 , v1*) as in (29), we obtain by substitution:

D- D, (f, v?) A=

M 2
CM f dyLf(y' )mo(y')i(Y' l+Mpoi(zI' (30)

Dl(fo, , z, vl)- D/(f-o, vi*) A V/(f.,,z, ) = 

M
= C(1-8)M E[ f dy t fo(y')mo(yl)qi(y' )12[2 - (1-5)M fdyf 3 (y')qi(yl) + M(l-5)qi(zlt)] (31)

i --l R ' R '

ro The functions in (30) and (31) represent changes in mean difference-squared distortion, when the

observation process shifts from the one corresponding to the nominal source to a mixed process, which

with probability (1-C) is the nominal source and which generates deterministic z-amplitude data with

probability C. The rates of those changes at t=0 are the Influence Functions, lt(fo,z,v?) and lt(fo,z,vj*),

of respectively the encoding schemes v1' and v1*, at the nominal source g-, and the amplitude value z.

That is,

I ) A dVj(fo, ,z,v?)I1(O'zV1d I =0 =

=M f dyL o(y')mo(y')poI(y' [1 +Mpo(ZI')1 (32)

A dVo(f0 ,,Z, V1*)

=(1-f)M 2 dy' f.(y')mo(y')qi(y' 2-(1-5)M fdyjfo(y)q,(y') + M(l-5)qI(zl' (33)

Given 1, given an encoding scheme v1, given the nominal densityfo, given z and , let us consider

the mean difference-squared distortion DI(f),,z, v). Let us allow the value I zI to go to infinity, and let

us then find the maximum value for which D(f), ,±-, v_) E This latter value is the

13
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Breakdown Point of the encoding scheme vI, at g, It represents the highest frequency of extreme

amplitude, (± co), deterministic outlier values that the encoding scheme can tolerate, before it becomes

useless; that is, before the observation sequences provide no information about the source data. We now

express a lemma, whose proof is in the Appendix.

Lemma I

Given M, consider a set {Ai, li<M} of intervals on the real line with Ai',Aj =0;

•Vi~j, U Ai = R, and ffo(x)dx = M-', where f(x) is the one-dimensional density of the Gaussian
lsisM A,

nominal source. Let in addition A, = (---, -a) and AM = (a, -e) for a > 0. Let v' be the optimal at the

Gaussian process encoding scheme, and let vj* be as in Theorem 1. Then, given 1, the breakdown points

' and 1* of the schemes v' and vl*, respectively, are given by the following expressions.

j = I{ + MP 1 [ P2 )- (34)

= 1 + (Q-2) [ QMy [2-(1-8)M fdy'fi(yL)qi(y ) } (35)

where, for m.(yl) and poi(y') as in (22) and q(YA) as in (24),

Poi f f dy' 1 o(y1)mo(y')poi(y') (36)

Qo3i A f dy1Lf.(y1)mo(y')q, (y1) (37)

Remarks For finite dimensionalities of the observation sequence, the encoding operation vj* clearly

satisfies the pointwise continuity property (A) in section II; thus, it is qualitatively robust. As exhibited

by expression (24) in Theorem 1, for {(yj)rQYi ) r- relatively small, the operation vj* maps sequences

y, onto the set of values in (25), using the optimal at the Gaussian nominal source conditional

probabilities. As ((yi)' Q7- yI A U2 increases, however, the operation vj* uses a mixture of such

I ' 1 4
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mapping probabilities, and asymptotically, (for (yI)T Q7- yj - cc), it maps the sequences yj, using the

unconditional nominal density function fv(x). Thus, it disregards extreme observation values, offering

protection to data outliers, at the expense of reduced mean difference-squared performance at the nominal

source.

Asymptotic Performance

Let us assume that the number of values onto which observation sequences yj are mapped is

asymptotically large. That is, M--). We are then interested in the performance of the encoding schemes

v, and vt*, for given finite 1. From expressions (28), (29), (30), (31), (32), and (33), and taking limits, we

find:

Define, the scalars A, and P1 as follows: N

A t: fdy' (y i)fo(x I y')m o(y') = A xfo (x) "4

p2 = E1 ({X+1 -mo(X 1)12) (38)

Then,

lim Di(fV )=(-A 2 )E± {X2 } (39)

M-.-.oo

lim fD1(f.,C,z,vr) - D,(f0,v?)~ I A2 { +p3 ] E~ (X 2 ) + pjpn2(z')) 40

Define,

q(x,yi ) - [1-min(l,Xl {(y )TQ7 -yj ii)-(x) +

+ min(l, X,{(y )T QT- y- 2 )fo(Xly ) (41)

Then,

12
Iira D (ffv,*)= E {X } - 2(I-8) f (I l(x) dv' (' ,n,(y' )vI(X.y

M --- *,,*R Ri

15
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+ (148) f dxf( f[ dy'~f0(Yj)q(x,y')][ f dyjf0 (yl)m.(yj)q(x~y')I 2 >

I II

>t (1-A2)EV. {X2  (42)

lrn [D,(fC,,z,v,*) -DI(f), vI*))

- ~l~)2 J xC2(x5 fdxf.f(X)qxy f ] dy f dy'ijf(y ) 0(y )q ,y)2-
R R!

R

From the above expressions, and noting that lim q(x,zI') =f0,(x), we also find, denoting by Q, the

IxI autocovaniance matrix of the nominal Gaussian source:

Define,

Cl _ ' -1 (44) *

Then,

lim 11(t.,z,v?) = A 2 [1+p3 IE X2 I + Z2 pIM (11)) (45)

tim l,(f,,Vi*)=

R

Jdx fx.(xlzlI)[ f dy'f 0(yl)m.(yl)q(x,yl)J
R R

lim 0~( (47) P.
%M-4o.

tim 1+ (15 f dx-)(xVI' (Iy~,(y' ), 0 y* )(xN')

R R''

16



Rf dy&i(yj )q(x,y') ('48•dx[ , dY'if(Y )mo(y )q(x'yj )]21j2fi (x) - (1lM)I 2(x)K'I d ';y)qxy) }- (48)

Let us define,

m_ max I mo(y )I (49)

Then, we can express the following lemma, whose proof is in the Appendix.

:-

Lemma 2

The limit influence function in (46), and the limit breakdown point in (48), that the encoding

operation vt* induces, are bounded as below:

lim l,(f05z,vi*) < (1-8)(3-8)41mt -1
(1_8m2(yd)q-xy )12 ,

- (1-6) Jdx 2 (x)[J dy'f (y )Iq(x y') Jfdytfo(y )m0 (y )q(xy')1

-Yz (50)

26 < lim * < (l+)4Xm 2 {(1+)4m 2 +(l-) dxf.(x)[ d y f(yt)mo (yI)q(x y ll) ]'2 }- (51)
1+ -M - R R(1

Thus, asymptotically, (M-+-), the optimal at the nominal source encoding operation has

breakdown point zero, and quadratic influence function. On the other hand, the operation v1* has then

uniformly bounded influence function and strictly positive breakdown point. Remarks As compared to

the optimal at the nominal source operation v', the operation v1* is asymptotically, (M--oo), superior in

terms of breakdown point and influence function performances. This is at the expense of mean

difference-squared distortion and differential entropy performances, at the nominal Gaussian source.

lndced, as it can be easily seen, asymptotically, (M--,, the process induced by vt* and the Gaussian

measure p( has higher differential entropy Ihan the process induced by v\,' and p,,. In addition.

17 -
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lir DI(fo,vt*) > lir Dt(fo,v?), and from (26) we conclude:M-- *M.--

im Dj(fo,vj*) - EP. {X2} _ (1-8)2 JdxI(x)[.dy~f 0 (y )mo(y )q(x,y )12 -
R R-

Vf&. 8 (52)

Given 1, let H(vt) denote the differential entropy induced asymptotically, (M--o-), by the encoding

scheme v, at the observation process [t. Let H.,;,,(v) denote the differential entropy induced

asymptotically, (M---) by v1, when the observation sequence is generated by the nominal source g,

with probability (1-C), and it consists of deterministic, amplitude-z data, with probability . Let p, be as

in (38), and let us define,

r2AE{X
2  2 A p2r-2

g(yr) = min(1, X{(y) (53)

Then, we can express the following lemma, whose proof is in the Appendix.

Lemma 3

Let 11 be some absolutely continuous observation process. Given 1, let f(y') denote the density

function of this process, at the vector point y'. For,

A 2-t yl 1 2 -2 -2 2 2 IB (v,) = 2- j dy ft(y')[1-g(yl )Ig(y I)[-2+1 +o/ +p (1+0 1)mo(yj)]

-[lnad fdy1Lfly1)[ 1-g(y')] 54

the differential entropies H,(vl*) and H,..,z(vj*) are bounded from above as follows:

ll (v*)!< 2-111 + ln2irp~j + B1(v,*) (55)

t 2- [ l+In27rpT2 + (I-l)B,(vt*) +

18 0



0

+ 2-'g(zl')( l-g(zI')I[-2+ +1 7 + PT 2 ,(Yl z-m3(l)A

For I z I -owe find a tighter bound on Hj,.,,(vj*), as follows:

0 imHg.;, (v1"') = (1l. )H,.(vt*) - jdxf.(x)1lf.(x)!5;

(l- )2-'[1+ln2r1~ + C2-'[l+ln22trO + (l- )B '.(vi*)

=2-1 [1 + ln27rp~I + (l-)B,(vi*) - Clno1j (57)

We note that the differential entropy H,,(v?') induced asymptotically, (M-00), at the nominal source

by the optimal at the nominal predictive operation vI is bounded as follows:

H,,.(0)= 2-1[1 + ln27rp 21 (58)

* Also,

We point out that when the nominal Gaussian source is k-order Markov, then we select l=k. and we

deploy the predictive operation Vk *in Theorem 1, for 1=k.
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V. ASYMPTOTICALLY LONG OBSERVATION SEQUENCES

In this section, we consider the same outlier model and the same Guassian source, as in section IV,

but we include asymptotically long observation sequences. In the presence of such sequences, the precise

modelling of the observation processes that evolve from the outlier model in (1) and (2) is an impossible

task. On the other hand, enlargements of the class of observation processes, as those in (17), misrepresent

the actual class when long observation sequences are considered. In fact, when the length I of the

observation sequences tends to infinity, the class F1 in (17) represents the case where the observation

process is the nominal source, with probability (1-8), and it is some other process, with probability 5; that

is, no data mixing is then included, and the outlier model is not then a member of the class. For non

Markovian Gaussian nominal source, and asymptotically long observation sequences, we thus extend the

predictive operations of section IV adhocly, but in an intuitively satisfactory fashion.

Given I finite, given k, given the observation sequence yV, and for Q, denoting the 1-dimensional

autocovariance matrix of the nominal Gaussian source, let us define,

k1 AQ 1 ,9+) 1,-ai.(y I)= I [Y().'] QT I1i++ (60)

For X as in (23) in Theorem 1, let us also define,

,I (Ykl) Ai1, Yilt"

I I ,, ,(y .)J

1(ykT= [I (ykY) ..... z &J)tY 3 (61)

k/Let us now consider the following two mapping densities, that map the observation sequence yt

onto the real line, for predictive encoding of the datum Xkt,+ from the nominal source:

k-I m._ k-1"_q' l _ niin I l-niin 1, -_ ___

(,(x y.,, ~j'n"-f ''l + L ) L J(i 2)

in ( in

I,,> 21) D



q.xyI )  l-k- E rain 1, -k{fo(x)

L- j=O L aj*,(y '

k-1 _+k- Z in1 fo (X I z 11(y 1)) (63)
j=O I jl.

The mapping density in (62) is an intuitively pleasing extension of the operation v1* in Theorem 1,

but very complex, both in terms of implementation and in terms of analysis. In addition, it does not

provide a clear indication as to the mapping values, when their number M is finite. Thc mapping density

in (63) is much simpler. It also has intuitively pleasing characteristics as well: For X.-40,, it converges to r

the optimal at the nominal source mapping. It also disregards extreme data values, using the

unconditional density fo(x) in its mapping, when k- Y min 1, - 0. In addition, q*(xy I)

provides easy extensions of the mapping values in (25), when M is finite. In conclusion, we propose the

following predictive encoding scheme for non Markovian Gaussian nominal sources, and arbitrarily long

observation sequences:

Encoding Scheme

Gven M, select a set (Ai, l<_i M} of intervals on the real line with A(- 1 A j =0 i;tj,

. Ai = R, and Jfo(x)dx = M- ', Y'i.
15i M A,

Select some finite natural number 1, and given 8 : 0<-8<1, find the positive constant ?1, as in (23).

Then, given k, given an observation sequence yl , map y' onto vi* with probability q*,(y I1.

where for poi(y') as in (22), for z I(yk') as in (61), and for aij(yI) as in (60 the valu-s

(vi*, liM) and the probabilities q,*(y k) are as follows:

q,*(yN ) 1- -k - ' m rin 1, --:- +Y[ k- _q 1 (yjI =N~ lVtj m 1 ajj +

k-A 1

21 S
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%

vi*=M(1-5) fdyl fo(yl)mo(y')q, (Y')

Remarks Given 1, given length kl of observation sequences, we will denote the abo~c cr J.ine•

scheme V1,k*. We will denote by {Vl.k*, k2l} the sequence of encoders evolving trorn v, f -cr

varying k values. We note that the scheme utilizes -size disjoint blocks of observed data. hcre I

may be considered as a design parameter. In addition, it bounds disjoint I-size blocks of data 1n

poi(Z It(yI)), for all i. This is in contrast to the scheme in section IV, and is needed tor

asymptotic, (k-4-), qualitative robustness.

We now express a lemma, whose proof is in the Appendix.

I,

Lemma 4

Let {bim be the one step prediction coefficients of the nominal Gaussian source, \\hen il-

size observation sequences are given. Let (bm I be such that, " I b,m I < c* < -: -Vm. Then, "he

sequence [Vt~k*, k>l) of predictive encoders is qualitatively robust at the nominal Gaussian

source. That is, it satisfies both continuity conditions (A) and (B) in section II.

Let Dk(fo, Vtk*) denote the mean difference-squared distortion induced by the encoding

scheme Vlk*, at the nominal Gaussian source. Let D1,k(fo, ,Z,V1.k*) denote the mean difference-

squared distortion induced by Vitk*, when the -dimensional observation density is such that,

Y) =  [ y+:P+ + 6(zI), and let then 1.k* be the breakdo.vn point of X'Ik*. Given

M. we then easily find by substitution, and as in section IV:

2A

. ,0 1 ) -- X - -k( Y- 6) ', L i - .V ,(f % m , ( YV/ q , ,-

-I ALA

,=t Lm' .
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P~ffM2WWZWFdKUWRrvtWv~r~ldW~r7WT~ X-W"b

2-(-8) f y~f(y"qi*yk

J R 'f( (66)

D, I(fo,, , *.) DiI(f, , *) Ii

FM' dy'f.(l~m.yl~q*(y 2 [-(1-)MJ dy'Lf 0(Y')qi*(y')

+ M(1-8)q *(zI')] (67) '

1= 1+(-8)[ E(Qoj*)] [XQ~)[2.(1-8)M fdy'Lf0 (y'l)qi*(yi)] F (68)

where,

A d'L.YlmoyiC*(I)

Let us define, for {aI(y'l')) as in (60) and I '(ykj') as in (6 1),

q*(x,y = -k- I 1( x)

k-I _

+ k- mint 1, -kJ 0 (X I ZVJ(yl)) (0

Then, if lk If- ZN',k' denotes the influence function of the operation VIk*, and in parallel

to the expressions (42), (43), and (48) in section IV, we find the fol-lowing asymptotic, (M--oo),

expressions: 
5

2
lim D~kfl* =X f1 dX (y- )?n,,()j dxft (

2
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.1
lim + (x) (dyfLfv(y))m(y2)q*(xy •

d do(Y~~6)2 r(xfdyILf.(y')q*(x,yl f x dyfo(yf)mo(y)q*(x,y 2

R L R I R

2 -

+ (1-8)2dXf-(x)q*(x,zl) fdyLf3 (Y1 )m(y)q*(x,y1 .
R a T Im1 (72) %

LWJ"

n re t =(Ia+ (ymoic, (x) f dytofb(yo)mn(yoi)q*(xy 1  %
M-*o. La' I

-fx[ dI.(Yl)mo(y')q*(x.y~ jd'f(l~*y -I1W I I II W I i (73)

Remarks The asymptotic expressions in (72) and (73) correspond to I-sizc observation blocks

and asymptotically many mapping values {vi"'). For I-ordcr Markov nominal Gaussian sources,

those expressions rcpresent the asymptotic, (M- oo), influence function and breakdown point

induced by the encoding scheme {Vt.k*) at the nominal source, for any k. Comparing

expressions (71), (72), and (73), with expressions (42), (43), and (48), in section IV, we can draw

the following conclusions:

The encoding scheme in Theorem I induces smaller mean difference-squared distortion at the

nominal source, than the scheme v1,1 * does. However, the breakdown point of the former is

generally smaller than the breakdown point of the latter. The influence function of vl,1 * is

bounded, and it converges to its bound slower than the scheme in Theorem I does.

If Hl,,(vt,t*) denotes the differential entropy induced by the scheme vj.I * at the nominal source, and for

B,,(vi*) as in (54), g(yl) as in (53), and Pt as in (38), we find via methods as those in the proof of Lcmrna

3:

llJ(vut*) <2-I 1+tn2irLp + Br, (V1 *) +

24
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+ 2 & dyfo (yI )[l-g(yl )]g(yl )[m2(zI (y )) - m2(yj )1 (74)

From the results in Lemma 3, in conjunction with (74), we conclude:

The scheme v1.I* induces lower differential entropy at the nominal

source, than the scheme in Theorem I does.

Limiting Behavior

The sequence {VIk*,k>l) of encoders in this section was designed especially for non-Markovian

nominal Gaussian sources, and asympotically long observation sequences. Thus, the study of its

performance characteristics for k-4- is important. We will perform such studies, for the case where the

mapping values {vi*} are asymptotically many; that is, for M---. We first express a theorem, whose

proof is in the Appendix.

Theorem 2

The influence function /rn Imk(foZVlk*) is uniformly bounded from above, for every z and every
M-oo

k. The breakdown point lira t,k* is uniformly bounded from below by a strictly positive constant, for

every k.

In view of Theorem 2, we remind the reader that the optimal at the nominal source predictive

encoding operation induces asymptotic, (M-*--), breakdown point equal to zero, and unbounded

quadratic asymptotic, (M- ,,), influence function, for every dimensionalityf the observation sequence.

As k increases, the asymptotic, (M---o), mean difference-squared distortion induced by the sequence

{VI.k*) of encoders at the nominal source, decreases monotonically, but remains uniformly higher than

that induced by the optimal at the nominal sequence of predictive encoders. Given k, the forner is given

by expression (71), where the latter is given by expression (39) in section IV. Let II .(vt,k*) denote the %

differential entropy induced by the encoding scheme VI.k* at the nominal source. Then. we express a ,
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lemma, whose proof is in the Appendix. For pi as in (38) and r, and or as in (53), we first define,

k , A I 1Gkjt(ykt1 k-n E~= mini 1, n' :

j= m 1 (75)= ~ ~~~aj,/(yil-- (5)j

Lcmma 5

For g(y ) as in (53), and for,

D(Vt A f dyIIfo(y l)Gki(y'j) 1_Gk- (y' Okik +

+ r k2 )m 2 (z ( -2]

- [lnai [I - d f(y)g(yj t  (76)
U L R' ]

The differential entropy HO (V/k*) is bounded as follows:

D2

H 9,(Vtk*):5-j1 I+ n27rpkI +LO(V1,k*) (77)

If {bim are the one step prediction coefficients of the nominal Gaussian source when m-size

Mobservation sequences are given, and if Y I bl, I < 0, Vm, then there exists c* < c, such that,
i=1

I mo(z'(y')) I S X.ct*. Then, we find a looser upper bound on Hp,(V1k*), as follows:

Hp,(vlk*) S -l I+ln2lrpkj + C(vl,k*) (78)

where

C( ,k) "a - + ro 2 (lk1 )%(Ct*)2  [ dy- R y' )

f dylf(Y)Gkj(Yl - lnak I-f d)yf,,(y'l )g(y 1  (79)Rkj R, .

26
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Remarks The differential entropy Hg(vtk*) decreases monotonically with increasing k, and remains

strictly higher than the differential entropy induced by the optimal at the nominal predictive encoder, at

the nominal source, (given k, the latter equals 21[ 1 + ln21rpk, ). In the { italic I im )it, (k---), the bound

in (78) can be as small as the asymptotic mean-squared error, nim X, of the optimal at the nominal source
.

one-step predictor allows. This depends on the spectral characteristics of the nominal Gaussian source.

0-

J,
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VT. CONCLUSIONS

In this paper, we considered predictive encoders with distortion, for entropy reduction. We -

considered a stationary and Gaussian nominal source and we designed and analyzed qualitatively robust

predictive encoders, for resistance to data outliers. Our encoders offer protection against outlier values, at

the expense of increased distortion and differential entropy, at the nominal source.

J.

.5"



APPENDIX

Proof of Theorem I

Let g, and 9.t2 be given, and let f, and f2 denote their corresponding densities. Let

f,.(x,yl) denote joint density of the datum Xm,, from the nominal process, at the point x, and

the random vector Y' from the observation process at the vector point y'. Then, from class F

we conclude:

f. = (l-6)f(x,y1 ) + 8fo(x)[f2(yI)- (1-3 )fo(y 1 (A.1)

fA0.4(xIy) ) = [1 ( -f2 (Y) ] fo(X) +f2(l f f2y)

+ f 2(Y) fo(xIy ) (A.2)

f ( -)fo(Y ) (1-)f 0(y) -

Pi.2(Yi)A'ff.L(xlyA) d x  M- 1 + Poi(Y I (A.3)'
A, f2(Y ) f2(Y1) ." f2 (A.3

Let us define,

b ( [ -1df 0 (Y1)M - (y' )P,. 2 (Y) (A.4)

Then, we easily find,

= - y' i=1 Y)"(YI -

< D . .(y',, { (, 1 ' {, y1 5. 5
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X[dYLfl (Ys)R, 2(, o, ,dy' .. ( )M.0(Yj)Pi, 2 (Y'  , 2 e

>{X : dY~fi (A )Pi.2 (A} fdlf(])-( )Pi.2 (YI 2-

= [fdyJo(y' )m0(y1 )pi. 2(A 2(A6

with equality in (A.6) iff1 (y') = f2(yl) ; -V y'FtR'. From (A.6) and (A.5) we conclude,

DI 111112, {b('i2)-] D/(9 2 ,9 2 , {b, 2 2)))

= E , {X2 }_.(1-) 2 M [Jdy'Lf(y)mo(Y'I)Pi,2(Y 2 (A.7)

iwhere,

b(2 .2 )= (14)M f dyLfo(y1 )mo(y I)Pi.2(Y 'z) (A.8) 'p

Now, suy D,(g.2,i92,{b 2 2 )1) corresponds to infM [ Ido(y)m(yi)P,. 2(0, 2

Application of calculus of variation gives that I" in (23) attains the latter infimum. The proof of

the theorem is now complete.

Proof of Lemma 1

rN
From (24), we have lim qi(zI')=M "- 1" Yi. Also, limp,(zl)= =l,N'I

z-- 0 otherwise'

Substituting the above in (30) and (31), in conjunction with (28) and (29), we find that

Dt(fo, ,+*o,v ) < E, (X2 ); V <. and D,(fo,, v,+*) < E). (X 2 [ - <

Proof of Lemma 2

We easily conclude, for q(x,y ) as in (41):

q(xy,) <f.(x) +f,(x I Y'j)
and thus,

0I

: : : : 7 ! = 3 0



2f1 (x) - (I 4) 2 (X)fdyf,(y')q(x,y') > 251'(x)(A9

Also,

fdy'f 0(y')m0 (y')q(x,y') 5

+f fdyf Im(yl) Imi(jj(1,X,{(-1yj)IlyX fI I)

2klmf.(x) (A. 10)

Applying (A.9) to (48), we find,

Applying (A.l10) to (48) and (46), we find,

tim~~ 1 15)Xm ((1+8)4Xm +( f)dxfo'(x) Jdyifo(y')mo(yl1)q(xyl F
R RR '

(A. 12)

iiM 1(f4,Z,vj*):5 ([...)4X2Ml{ 3-&.{1-8)min(J ,)Xc 1 Iz I

(lofdxfI( fOy )q(x, y' Idy'If. (y I).()q(x, y
R [)jyoy R'

= IS(-5)4X2M2

- (1-8)2 JdXf 2 ( II ffX 2(.3
x)If dy'J0 (yl)q(x~yl yl.y~.y~~,yI(.3

R R'J R'JukImoYJ~.I

Proof of Lemma 3

Clearly, for q(x, y~) as in (41]),.we have, 
0

>I~v* d~~~ Jx(~)oqxy
R') (A. 14)

W..
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where,

fdxq(x,y')Iogq(x,y,) = [1-min(l,), j(yI)TQ-ly~ I" r12fdxfo(x)Logq(x,yl)

R IL

+ min(1,k 1, {(yl)TQjI yl )-112)Jdxf 0,(x I y')logq(x,y') (A. 15) -

R

Let us define,

roEMA I2 (A. 17)

Then, from (A. 15) and the convexity of the logarithmic function, we obtain: A

C(yI) -Jdxq(x,yj )Iogq(x,y') =[1-g(yl )jfdxf0 (x,)logq(x,yl) +
R R

+ g(yl )Jdxfo(x Iy')logq(x, y,)
R

1I-g~y~ljdxfo(x)logfo(x) + I[l-g(y')1g(yl)Jdxf.(x)Iogf,(x I y')
R R

+ f1-g(YI)]g(Yj )Jdxf0(xlIyll)logt.(x) +g 2(yl)jdxfo(x Iy')logf0 (xI yl)
R R

-2'1 gj11 Igit~ -21g2(yl)[tog2irp2 + 11I

-2-1g(y')E1-g(y')(Iog2tr + Iog2irp~ + Pi-Iro + m.(y )I + rj21p +

- 2-11 + Iog27pj+ 211 -g(y' )]!ogo -

-2-1 g(y'I )M I-g(y~ )II - + 1+ (1+ PT2( I ~r~(~) (A. 18)
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;where, log is the natural logarithm In, and where,

2 A -2 2
oY, - r p (A. 19)

Substituting (A.18) in (A.14), we find (54). Similarly, we find,

-Hp, (vi*)_> (I-C) f dy'fo (y' )fdxq(x,y' )ogq(x, y') +

R

+ Jdxq(x,zl')1ogq(x,zI') >_ -(1- )2-1 [1 + log2irp] -,
R

--(1-)B(v*)- C2-' [1 + Iog2 rpI] + 2- [l-g(2I')lIoga -

- 2-' g(zl')[ l-g(21')]C-l + oF + 0 -2 + p- 2(l + o2)z2m2(l1)1 (A.20)

Proof of Lemma 4

The mapping qj *(yk/) is clearly pointwise continuous for every finite k and every i, since

mi - J and poi(ylI) are both pointwise continuous, for every i and j, and cvery finite k.

Let now k be given, and let then x t and yi' be two sequences such that

+l,,l ,0 1, for k(l-a) of the k i's. Then,

I mo(z (yY)) - mo(Zkl(xkl)) < ac* + a c* = a c*(l + XI)

kII

and given, x t, given el > 0, there exists a, > 0, such that,

t {#j Y,(y 91+l, xjg++f)') > a,} < ka, implies,

I P,,i('(yI))- Poi(z'(x '))I < C, ; i (A.2 1)

* Similarly, given x, , given -2 > 0, there exists 62 > 0 and 83 > 0, such that,
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aj./K:,I

#j :yj (jqjI)' yjq,')) < 53 ad y X9+)I, ,9-. PI< 8

Then,

k-K,

I2 -mnI k <Cz(A.22+4x k-~ y:ij< mpeImin 1, . ji(x )J i 1, A .i (zej.I~

Y.~

{#j~~~~~~ : y(y 9 Yl, 9))'> c ' k, orP som a) uc ha i mins, 3

ThenfThorm

k-I AI.x mi ,( I zkii l)

qj(Xy mmi 1, (A.nI2,5)
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k-!
qj,(x,ylt) = k-' E qi(x,y'J)(A2)!

j=0 
A.6

If Dt,k(fVl.k*) denotes the mean difference-squared distortion induced by Vt.k* at the

densityf, then,

k-I
tim Dk(f, V.k*)=k - ' D J)(fVk*) (A.27)

M-*O

where,

DJ)(f, {X2 } - 2(l-)dxf. (x)[ J) q

f d kl kl f Xt I y, 1 l .

R' R

( ddX fff) (yk)x lykt y *(x,

+ (1-) 2 'dx2 (x *(x,y) fdy I IyV*q y1t  (A.28)

Due to (A.27), we conclude that the influence function induced by Vtk* is the average of

the influence functions induced by the operations {qj*, 0_j9k-l ). Also, if gtji* denotes the

breakdown point of the operation qj*, then the breakdown point of Vt.k* is bounded from below

by min .j*. From (A.28), and due to the boundness of the vector, zkt(ya), we now conclude

that there exists some positive constant, d*, such that ]J','* > d* im t * ; Vj. If Itj(f.,z,qj*)
M-+

denotes the influence function of the operation qi* at the nominal source, we also conclude that

there exists some finite constant, e*, such that, I,,j(f 01z,qj*)<e*lirn . (foZV,.*). TheM--*

Theorem easily follows from the above, where Mn lji(f 0 ,z,vtj.*) is given by (72) and lrn 1*

is given by (73).

Proof of Lemma 5
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For q*(x, y k) as in (70), we clearly have,

-Hi(V* tJ dy'lf 0(ykl)fdxq*(x,ykJ)lnq*(x, ykI) (.
Rku R (.9

For qj *(x, yk) as in (A.25), and due to the convexity of the logarithmic function, we have,

k-I

fdxq*(x,yk')lnq*(x,ykl) -1 ' X dxqj I( yj)Inq*(x,YlI
R j'-O R

> - kl)(ANI

j=O i=0O R

Also,

fdq*x~'~nq*xy F-i 1, fx(xnq*(x,),1J
R LR~if iy)jfx 0 x/q

+ min[ 1, ()fdf(x I Zkl(ykl ))1flq,*(X,y) 'Id' 
-

tImn1, m 1, ff(x)x '(x~))
yV) R

" min1, I-in 1, ]] Y k(yl)n(

mint I min[ aiV) f dxf0(x I4(')n(x  xI4('). (A.3 )

Let us def'ine,
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Then, from (A. 3 1), and for ro and p.. as in the proof of Lemma 3, wc obtain:

R 1

~~ ~ -)-nr -, -rgi,(yT) +l l- -y

2 2

2 ~ 0 1g 1  1~'' 2I~ir - ki

+ +(kMOkI(A.33)2 2~ 2 r2z~1 ,g~~J [~
Pk r kI0

Define,

J~ I )c (A.34)

From (A.30) and (A.33), we then obtain:

fq*(xyI)Inq*(xy 1) -- Gk,(' I j- 1 kJ( 2
R 22

I[ 1-(~ku Innirrp2

1 -2 - 2k11 2 Gyk) kl ) pj

Y+P pm (zkyI) Gk,I(Y')
2La ki ki o I I

1 [ 2 , -2M2iklkl I~ y
2 kr. + rnmz ov I G

LO- 2+ (yl+ p2 + 01jj(k~k) 21yJ2+ i k k 0~[~ 1~ 1~( J~~z('y')Gk I'
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2-[ I + lnicp~jl + [1 - GkJ(y w)jlnak,

2 Gk,,(YI )I-Gkl I( k/][o k1 + ro2( + Io - 21 (A.35)

* ; where,

aYk A ro p1kj (A.36)

Applying (A.35) to (A.29) we obtain the result.

38

SrS



REFERENCES

[1] Berger, T. (1971), Rate Distortion Theory. A Mathematical Basis for Data Compression, Prentice- _
Kill, Englewood Cliffs, New Jersey.

[21 Hlampel, F.R. (1971), "A General Qualitative Definition of Robustness," Annals of Math. Stat., 42,
1887-1896.

[31 Papatoni-Kazakos, P. and Gray, R.M. (1979), "Robustness of Estimators on Stationary
Observations," Annals of Probability, 7, 989-1002. ..r

[41 Papantoni-Kazakos, P. (1987), "Qualitative Robustness in Time-Series," Information and
Computation, 72,239-269.

[5] Papantoni-Kazakos, P. (1984), "Some Aspects of Qualitative Robustness in Time Serics," Robust
and Nonlinear Time Series Analysis, in Lecture Notes in Statistics, 26, 218-230, Springer-Verlag.

[61 Papantoni-Kazakos, P. (1981), "Sliding Block Encoders that are Rho-Bar Continuous Functions of
Their Input," IEEE Trans. Inform. Th., IT-27, 372-376.

d

%.

3N

%'



DISTRIBUTION LIST

Copy No.

1 - 6 Air Force Office of Scientific
Research/NM

Building 410
Bolling Air Force Base
Washington, D.C. 20332-6448

Attention: Major Brian W. Woodruff, NM

7 - 8 Dr. P. Kazakos, EE

9 Dr. R. J. Mattauch, EE

10 - 11 E. H. Pancake, Clark Hall

12 SEAS Publications Files

ft

0352:ald:270R



~D~NW~

A(c
La

U

.~ ..- 0 - ~ < s:-~*;:*< ~


